skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Henry, Amy K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract High community diversity may either prevent or promote the establishment of exotic species. The biotic resistance hypothesis holds that species-rich communities are more resistant to invasion than species-poor communities due to mechanisms including greater interspecific competition. Conversely, the invasional meltdown hypothesis proposes that greater exotic diversity increases invasibility via facilitative interactions between exotic species. To evaluate the degree to which biotic resistance or invasional meltdown influences marine community structure during the assembly period, we studied the development of marine epibenthic “fouling” communities at two southern California harbors. With a focus on sessile epibenthic species, we found that fewer exotic species established as total and exotic richness increased during community assembly and that this effect remained after accounting for space availability. We also found that changes in exotic abundance decreased over time. Throughout the assembly period, gains in exotic abundance were greatest when space was abundant and richness was low. Altogether, we found greater support for biotic resistance than invasional meltdown, suggesting that both native and exotic species contribute to biotic resistance during early development of these communities. However, our results indicate that biotic resistance may not always reduce the eventual dominance of exotic species. 
    more » « less